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Abstract: One of the most promising approaches to address the mismatch between computation-
intensive applications and computation-limited end devices is multi-access edge computing (MEC).
To overcome the rapid increase in traffic volume and offload the traffic from macrocells, a massive
number of small cells have been deployed, so-called heterogeneous networks (HetNets). Strongly
motivated by the close integration of MEC and HetNets, in this paper, we propose an envisioned
architecture of MEC-empowered HetNets, where both wireless and wired backhaul solutions are
supported, flying base stations (BSs) can be equipped with MEC servers, and mobile users (MUs) need
both communication and computation resources for their computationally heavy tasks. Subsequently,
we provide the research progress summary of task offloading and resource allocation in the proposed
MEC-empowered unmanned aerial vehicle (UAV)-assisted heterogeneous networks. We complete
this article by spotlighting key challenges and open future directives for researches.

Keywords: computation offloading; Internet of Things (IoT); heterogeneous networks (HetNets);
multi-access edge computing (MEC); non-orthogonal multiple access (NOMA); resource allocation;
unmanned aerial vehicles (UAV)

1. Introduction

With the increasing popularity of smart devices, many sophisticated applications are emerging
in the 5G network and beyond, for example, online gaming, augmented reality, and intelligent video
acceleration [1]. These new applications often require intensive computation, high energy consumption,
and high latency sensitivity. Unfortunately, end devices are usually constrained by finite battery
capacity and low computation capability and are not able to handle the aforementioned applications.
The contradiction between the low capabilities of end devices and high requirements of applications
in 5G motivates the development of multi-access edge computing (MEC) [2]. Unlike conventional
centralized clouds, MEC moves computing away from cloud nodes towards the network edges, thus
enhancing the availability and reachability of cloud services at the edge of networks in close proximity
to MUs. In light of this, MEC offers the cloud services and functions (e.g., storage, computation, and
caching) at the edge of the network, thereby improving MU’s quality of experience—for example,
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extension of the battery lifetime, low latency, and relief of burden on the fronthaul links. Typically,
MEC servers are smaller with moderate computing resources and deployed at aggregation points
such as base stations (BSs). Moreover, MEC is highly scalable as the number of MEC servers is
expected to increase significantly and is able to support low-latency applications, real-time mobility,
and location awareness [3,4]. Among considered problems in MEC, computation offloading is of great
importance and presents in many network use cases. The idea of computation offloading is to enable
MUs to offload their intensive computations to the MEC servers, which are typically more powerful
in computational capabilities and storage capacity, and are not constrained by energy consumption.
Through computation offloading, many compute-intensive applications (e.g., 3D gaming, virtual
reality, autonomous driving, and location-based service recommendation) can be deployed at the edge
of the network so that MUs can make use of these services. Additionally, computation offloading is
tightly coupled by radio resources—for example, transmit power and subchannel assignment, and
computation resources such as computing frequency of MUs, computation scheduling at MEC servers,
and MEC server selection.

To overcome the rapid increase in data traffic and rate requirements, one potential solution is
the use of heterogeneous networks (HetNets), which is formed by the deployment of conventional
macro base stations (MBSs) and small BSs (SBSs) such as pico-, femto-, and micro-BSs [5]. While
HetNets bring substantial improvements to the network capacity and service coverage, the dense
deployment in HetNets can result in severe interference, which in turn rapidly deteriorates into the
network performance. Therefore, interference management is considered as the central premise of the
practical deployment of HetNets. As small cells are being densely deployed and due to challenges
of providing wired backhaul links for dense HetNets, how to forward and receive data in HetNets
has been a crucial issue. In general, there are two main types of backhaul in HetNets, including
wired and wireless backhauling solutions [6]. Many factors should be taken into consideration of
choosing backhaul types—for example, implementation cost, traffic load, and quality of service (QoS)
requirements. In fact, it is difficult to deploy all small cells with wireless backhaul links because of
installation obstacles. Recently, wireless backhaul has been considered as a feasible and cost-effective
solution for sending and receiving data in dense HetNets.

Since both MEC and HetNets could offer attractive features including low latency, real-time
mobility, and high computation capabilities (MEC) and high spectral-energy efficiency and coverage
extension (HetNets), which are exactly required by the 5G network, MEC and HetNets are recognized
as two key enabling technologies in the emerging 5G network. Although there has been growing
interest in MEC in recent years, most of the existing studies are dedicated to single-server MEC
networks. In terms of computation offloading and resource allocation, previous works usually simplify
the network model such as one MU in a small cell [7], one MEC server [8–10], and dedicated backhaul
links with infinite capacity [11]. Existing works do not envision a holistic architecture for MEC in
HetNets and consider heterogeneous MEC servers, i.e., MEC servers are distinctly different in sizes
(computing units) and configurations (computational speeds). It is reasonable to believe that MEC
servers will be densely equipped at various places such as cellular BSs, WiFi access points, business
premises, and portable devices around our lives, e.g., mobile phones, vehicles, and wearable devices.
Regarding the concept of small cell cloud, a general architecture was proposed in [12,13], where the
small cell manager is introduced to manage cloud resources provided by edge servers collocated
with small cell base stations. There were some approaches for computation migration in various
edge cloud concepts—for example, small cell cloud in [14,15], follow-me cloud in [16], and mobile
micro-cloud in [17]. The combination of genetic algorithm and particle swarm optimization in [18,19],
game theory in [10,20,21], and machine learning in [22,23] were adopted to design algorithms for
jointly optimizing task offloading and resource allocation in small cell networks. As security and
privacy are important issues and edge devices are typically located at physical locations close to
eavesdroppers and attackers [24,25], many recent studies have been devoted to privacy and security
issues. For example, a survey of security threats and challenges for different edge computing paradigms
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was provided in [25], the application of deep reinforcement learning for security in mobile edge caching
was investigated in [26], and physical layer security for MEC systems with joint consideration of task
offloading and resource allocation was studied in [27]. However, a common assumption in the existing
works is that small cells are all equipped with wired backhaul.

It is well known that the implementation of HetNets faces the challenge of data transmission over
limited-capacity backhaul links, especially when considering ultra-dense HetNets in the 5G network.
Therefore, it is urgently required to integrate the two key concepts: MEC and HetNets, and propose
a holistic architecture for the integration of MEC and HetNets (so-called MEC-empowered HetNets
or MEC HetNets in short), which are the main objectives of this article. The integration of MEC and
HetNets will provide a viable and realistic solution for the 5G network to take individual benefits
of MEC and HetNets in order to meet critical requirements of applications and services in the 5G
network. For instance, latency-sensitive Internet of Things (IoT) could rely on MEC for extremely-low
computation latency requirements and on HetNets for massive connection over distributed geographic
areas. In summary, our contributions are three-fold:

• Firstly, we provide an overview of computation offloading and resource allocation in single-server
MEC networks.

• Secondly, we propose a novel framework of HetNets with MEC, where both wireless and wired
backhaul solutions are supported, flying BSs can be equipped with MEC servers, and MUs need both
communication and computation resources for their computationally heavy tasks.

• Finally, we discuss five challenges and open issues stemmed from our proposed architecture,
including joint interference management and offloading decision, joint user association and
offloading decision, hierarchical and collaborative computation offloading, joint user association
and MEC server selection, and non-orthogonal multiple access (NOMA)-assisted MEC systems.

The article is organized as follows. In Sections 2 and 3, overviews of computation offloading and
resource allocation in single-MEC networks and multi-server homogeneous networks are given. Then,
the architecture of MEC HetNets is proposed and described. In Section 4, we discuss challenges and
open issues of the proposed architecture. Finally, we conclude the article in Section 5.

2. Overview of Computation Offloading in Homogeneous Networks

In general, MEC use cases can be categorized into consumer-oriented services, operator and third-party
services, and network performance and quality-of-experience (QoE) improvements [6,28,29]. Among them,
computation offloading is regarded as the main use case for consumer-oriented services so that it
enables end devices to run new resource-demanding applications, prolong the battery lives, and reduce
the end-to-end latency. However, computation offloading presents several challenges—for example,
efficient communication and computation resources allocation, appropriate selection of the MEC server
among available ones, and efficient management of simultaneous offloading by multiple MUs [28].
Due to the profound importance of MEC, there has been a large amount of research advocated for
technical issues in MEC, e.g., computation offloading, design of application and network architecture,
resource allocation, and implementation and standardization.

Regarding computation offloading, a critical component is to decide whether or not to offload the
tasks. Basically, the decision on offloading computation tasks can be categorized into three models:
local execution, binary offloadable offloading, and partial offloadable offloading. When either the
MU has a poor connection, no available MEC server exists, or the MU does not benefit from the
computation offloading process, the MU will locally handle the whole computation tasks. Otherwise,
the MU will offload their its computations to the remote MEC servers for computation handling. In
binary offloading, i.e., fully offloading, an integrated task, which cannot be partitioned into sub-tasks,
is performed using either local computing or MEC execution. In the meanwhile, in partial offloadable
offloading, a computation task can be arbitrarily divided into at least two sub-tasks, some of which
are processed locally while the others can be offloaded to and executed at multiple MEC servers
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by considering a variety of factors, e.g., user and server capabilities, resource availabilities, and
backhaul connection characteristics [1]. Two other important aspects of computation offloading are
the determination of the application model and management of the offloading process in practice [28].
The former refers to the offloadability of application, determines the amount of processed data, and
specifies the dependency among the offloadable parts, while the latter means how an MU determines
what should be offloaded, checks external factors such as the channel connection, system bandwidth,
and available computation resources at the MEC server, and makes the offloading decision.

The typical objective of computation offloading is to improve the user experience by providing
lower execution latency, reduce the energy consumption by migrating computation tasks to the server,
and optimize the trade-off between the energy consumption and execution latency. Actually, the
objective can be designed from the system-wide level, e.g., minimization of the total execution latency,
to the user-perceived performance, e.g., the minimum of individual user energy consumption and
revenue. In addition, the objective should consider distinct requirements of the target applications, for
instance, to exploit MEC in handling IoT applications, since the battery is limited at the IoT devices,
the trade-off between computation and transmission energy consumption should be studied [30].
To achieve such the goals for MEC, resource (communication and computation/storage) allocation
plays an important role. The resource may include the computational speed of the MUs, computation
resource at the MEC servers, transmit power of MUs, and bandwidth and time allocated to offloading
users. In fact, offloading decision and resource allocation are tightly coupled and jointly affect
the achieved performance. Let us take an example of a two-task MEC setting, where the first
latency-sensitive task is offloaded to the MEC server and requires a substantial portion of the MEC
computation capability, which in turn affects the remaining computation resource allocated to the
remaining task. Thus, the second task does not benefit from remote processing. A possible solution, in
this case, is to let the first task and a part of the second task to be remotely accomplished. In Table 1, we
summarize the existing research on MEC in terms of the offloading decision and resource allocation.
In-depth surveys on the computation offloading, resource allocation, and other aspects of MEC systems
can be referred to in [28,31].



Symmetry 2019, 11, 842 5 of 18

Table 1. Summary of research into offloading decisions and resource allocation in MEC systems.

Theme Resource Study Proposed Framework

Computation
offloading

Local execution [28,29,32] If an MU does not get any benefit from remote execution, and the computation task is executed locally [1].

Partial offloading [28,31,33] If a computation task can be divided into smaller parts, partial offloading is possible. Particularly, partial
offloading is suitable for latency-critical applications due to the execution parallelism [33].

Binary offloading [1,10,19] In binary offloading, a computation task can be processed using either local or remote computing. Thus,
binary offloading is suitable for simple and highly integrated applications [1].

Computation
resource

Computation speed [34] The CPU performance via adjusting the CPU frequency and/or supply voltage can be utilized to improve the
performance of MEC systems in consumption and execution latency [33,34].

Server computation
resource [1,30]

The amount of computing resources allocated by the MEC server for each offloading MU depends on many
factors, e.g., input data size, task workload, server computation capability, and network settings (e.g., number
of offloading MUs and MEC servers).

Radio
resource

Transmit power [10,32,35] MUs can adjust their transmit power for different purposes, e.g., interference management and adaptation to
channel conditions, to lower energy consumption and increase the offloading probability.

Bandwidth [1,36] Since MUs may run applications with different task workloads and completion deadlines, designing efficient
bandwidth allocation schemes can enhance performance of MEC systems.

Time [36,37]

MUs can share time resources to offload (accomplish) their computations to (at) the MEC server [36]. For
example, in MEC systems with wireless power transfer [37], the time frame is slotted into different parts for
wireless energy transfer and computation task offloading. The optimal allocation of time resources is highly
coupled with the offloading decisions and task characteristics.

JCORA Joint task offloading &
resource allocation [1,29,35]

With massive MUs, computation offloading would be a bottleneck. Moreover, the server’s computation
capability is typically finite, thus challenging the sharing of radio and computation resources for MUs.
Jointly optimizing task offloading and resource allocation is highly needed to further improve the network
performance.
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3. Multi-Access Edge Computing with Multiple Homogeneous MEC Servers

The majority of the existing studies has focused on single-server MEC networks. Typical network
settings are (i) single-cell networks, where an MEC server is integrated into the BS and (ii) single-server
MEC HetNets, where multiple small cells are overlaid within a macrocell, the macro BS is equipped
with an MEC server, and MUs offload tasks to the MEC server through the small BSs. Figure 1 provides
the pictorial illustration of these two network settings. The similarities of the aforementioned literature
are in the assumption of the single MEC server and/or the fixed user association even in the case
where an MU is under the coverage of multiple BSs.

MU
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MEC Server
MBS
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InternetSBS 1

UserApplication

MBS
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MBS

InternetSBS 1
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Cloud Computing 
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Figure 1. Two typical network settings of a single-server MEC system: (a) single-cell and single-server
MEC system; (b) multi-cell and single-server MEC system.

Very recently, few works have considered the existence of multiple servers in MEC networks for
various problems, such as jointly adjusting the computational speed and offloading subtasks of a single
user to multiple MEC servers [34], joint optimization of task offloading and resource allocation in
multi-server MEC systems [1,3], and the minimum number of active MEC servers [38]. Compared with
the single-server MEC network, MEC with multiple MEC servers could provide enormous benefits, as
follows [1,3]:

• As previously mentioned, due to the economic and scalable deployments, the MEC server usually
has limited computation resources. In addition, the mobile traffic is expected to increase 1000
times over the next decade and the number of connected users will reach 50 billion in 2020; the
single MEC server will likely become seriously overloaded. In contrast, MUs can migrate their
computation tasks to the best among several available MEC servers, thus reducing the burden of
computation from the single MEC server.

• It is possible that an MEC is under the coverage of several cells (i.e., multiple MEC servers), thus
the MU can offload its computations to the server with better channel condition and computation
capability. Therefore, MUs can save the transmission energy consumption (thus the total energy
consumption) and shorten the execution latency.

• In the case of partial offloading, a computation task can be divided into smaller parts and offloaded
to different MEC servers, thereby reducing the execution latency. MEC servers can coordinate
to exchange information to reduce inter-cell interference (ICI) among offloading users across
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neighboring MEC servers and improve the resource allocation efficiency. Moreover, collaboration
among different MEC servers can help potentially increase the cluster resources, thus affordable
to support applications with higher computation requirements.

In addition to extra benefits, there exist some challenges in multi-server MEC networks that must be
well addressed, as follows [1]:

• The availability of multiple servers makes the offloading decision problem particularly complex.
Each MU must decide that (i) what is the optimal operation mode: offload or not offload and (ii)
which MEC server should be selected such that the achieved performance is maximized and the
resource and task constraints are satisfied.

• Due to the existence of ICI, the resource allocation problem in multi-server MEC networks is
much more challenging than that in single-server MEC networks [3]. To mitigate this effect, the
spectrum resource within each cell can be divided into orthogonal subchannels, which should be
efficiently allocated to MUs (i.e., which subchannel an MU should use to offload its computation
task to the MEC server). The network performance can be further improved by jointly optimizing
the subchannel assignment and adjusting the transmit power at the MUs.

• On the one hand, it is foreseeable that a massive number of MEC servers will be deployed in
distribution in the near future, which can be distinctly different in sizes (computing units) and
configurations (computational speeds). On the other hand, the association between users and
MEC servers is greatly dependent on the deployment locations of the MEC servers, e.g., a specific
area may be densified by a large number of MEC servers while only one server is deployed
in other areas. MUs may run applications and services with different priorities and security
levels, e.g., some services can only run in private MEC servers due to the security consideration.
Moreover, computation tasks may be different in input data size, computation workload, and
execution deadline. As a result, the joint resource allocation problem should take into account the
above properties and characteristics.

Considering the above advantages and challenges, we proposed a decentralized computation
offloading scheme and resource allocation in multi-server MEC networks [1]. To enable decentralized
computation offloading, matching theory, a powerful tool to design distributed algorithms for a large
number of resource allocation problems in wireless communication, is adopted. Figure 2 illustrates
the result comparison in offloading probability and computation overhead, among the schemes
that only handle the computation tasks locally (local only) and remotely (offloading only), HODA
algorithm (HODA) [35], and our proposed algorithm (JCORAMS). From the figure, the offloading
probability decreases and the total computation overhead increases with the larger number of MUs.
The explanation is obvious since, with more MUs, each MU has a lower probability to utilize its
preferred MEC server and subchannel, and ICI among MUs becomes more severe. Another observation
from Figure 2b is that offloading all the computation tasks may not a good solution. Actually, the
performance of this scheme becomes worse than the local computing only method when the number
of MUs is sufficiently large. This is because the limited amount of radio and computation resources
needs to be shared among many MUs. Notably, the proposed algorithm outperforms these alternative
schemes in terms of offloading probability and computation overhead.
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Figure 2. Comparison four offloading frameworks under different numbers of users: (a) offloading
probability; (b) total computation overhead.

4. Multi-Access Edge Computing with Multiple Heterogeneous MEC Servers

The purpose of this section is to present an MEC-based HetNet architecture, where the coexistence
of wired and wireless backhaul links is supported and unmanned aerial vehicles (UAVs) can be deployed to
serve as flying MEC servers. We also present some future works that are stemmed from our proposed
architecture.

4.1. Motivation

It is commonly assumed in the existing literature that SBSs connect with MBSs via dedicated links;
however, providing all small cells with wired backhaul is not feasible in practice, which is further
exacerbated by the densification of HetNets in the 5G network. In this context, wireless backhaul has
been emerged as a viable solution. As opposed to wired backhaul, wireless backhaul is preferred due
to the following reasons [6]:

• Despite many advantages, providing wireless backhaul connections for ultra-dense small cells
is costly and time-consuming. Furthermore, there are many factors to be considered for the
deployment of wired backhaul, such as locations of SBSs and mobile user QoS requirements.

• A number of frequency bands can be used for wireless backhaul, for example, microwave band
between 6 GHz and 60 GHz, Millimeter-wave band including V-band (57–76 GHz), E-band (71–76,
81–86 and 92–95 GHz), W-band (92–94, 94.1–100, 102–109.5, and 111.8–114.25 GHz), and D-band
(130–134, 141–148.5, 151.5–164, and 167–174.8 GHz), sub-6 GHz band, satellite frequency band,
and TV white space band. Another easy-to-deploy and cost-effective approach that can provide
high capacity wireless backhaul in hyper-dense HetNets is free-space optical communication [39].
It is therefore expected that the achievable capacity of wireless backhaul will reach beyond 10
Gbps, thus making wireless backhaul a practical solution for dense HetNets.

• In some cases like hard-to-reach and rural areas, the very high deployment cost is a great challenge
of providing wireless access. Wireless backhaul is a vital solution for those areas, thus simplifying
the deployment and reducing the maintenance cost.

• It is expected that the 5G network and beyond will support emergency services and disaster
situations. Nonetheless, wired backhaul connections, which have been destroyed in the aftermath,
may not be repaired immediately, thus severely affecting the network response and reliability. In
such scenarios, temporarily deploying wireless backhaul links is a promising solution.

Previous studies are typically based on the assumption of perfect backhaul links, i.e., no resource
constraints on backhaul links. However, the realities are that such constraints exist in MEC-empowered
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HetNets and the backhaul link qualities have a great impact on performance achievement. For instance,
a small BS transfers the received data from a set of MUs to the MEC server through a wireless backhaul
connection, but forwarding all the computations to the MEC server would be not possible due to the
limited-capacity backhaul. How to design efficient wireless backhaul solutions for MEC empowered
HetNets is still not investigated.

Historically and originally used in the military, unmanned aerial vehicles (UAVs) have recently
used in a variety of applications, among which the UAV-aided wireless communication is an important
use case [40]. Investigated as an alternative solution to meet temporary and/or unexpected traffic
demands when terrestrial communication is not able to satisfy, UAV-aided wireless system offers
several advantages [41,42]. First, thanks to the continued cost reduction in UAVs, the deployment of
UAVs as flying BSs, which are used to provide communications for ground users and increase the
network coverage and capacity, becomes more feasible than ever before. Next, UAVs can be flexibly and
temporarily deployed in rapid response to either catastrophe and emergency scenarios or unexpected
events. For instance, UAVs can be deployed to provide Internet connectivity to post-disaster areas,
where the terrestrial network infrastructure fails to provide reliable communications and cannot be
recovered soon. In addition, the UAV’s status and communication can be jointly optimized such that the
network performance is improved, e.g., the UAV’s energy consumption can be improved by optimally
adjusting its flying speed, direction, and acceleration, and end-user QoS requirements are satisfied,
e.g., the UAV can adjust its altitude and mobility to establish reliable connections with potential users.
Finally, signals from UAVs to ground users can be significantly improved through the line-of-sight
communication links, thus reducing the effects of signal shadowing and blockage. However, due to the
finite weight and size, the UAV’s on-board energy is limited and the performance of UAV-aided wireless
systems is highly affected. Accordingly, to take full advantage of UAVs in wireless communications,
several challenges must be well addressed [43] such as air-to-ground channel modeling for UAVs-to-BSs
communications and ground-to-air channel modeling for BSs-to-UAVs communications, optimal UAV
placement, energy-aware operation of UAVs, interference-aware resource management in multi-UAV
systems, and performance analysis of UAV-aided wireless networks.

4.2. State-Of-The-Art UAV-Assisted Heterogeneous Networks

In this subsection, we provide a summary of state-of-the-art research works that combine the
advantages of UAV communications and heterogeneous networks. It is worth mentioning that 5G
and beyond will support not only communication, but also computation, caching, and control (4C).
This motivates us to propose a new architecture in the next subsection, which is able to integrate UAV
communications, edge computing, and heterogeneous networks.

In [44], the authors integrated UAVs into HetNets for public safety communications. Due
to the high mobility of UAVs and dense deployment of HetNets, designing effective interference
management schemes faces several challenges: (1) outage problems due to damaged and dysfunctional
BSs, (2) mobility and dynamic locations of UAVs, and (3) burst data transmission in the aftermath and
(4) high-QoS and low-latency requirements for mission-critical applications. Unlike existing works,
where UAVs are usually assumed to be deployed quickly, two deployment problems of UAV networks
was studied in [45]. The first problem is to minimize the maximum deployment delay for fairness
consideration and the other is to minimize the total deployment delay for efficiency consideration. The
work in [46] first presented four representative scenarios to show potential applications of UAV-assisted
HetNets, including UAV as flying BSs, UAV as mobile relays, UAV-supported energy transfer, and
UAV-supported caching. The work also demonstrated the superior performance of UAV-assisted
HetNets compared with static networks and highlighted some challenges and open issues—for
example, coordination among UAVs, energy limitation of UAVs, flying ad hoc networks, and UAV
deployment. A two-layer (ground and aerial layers) air-ground mobile edge network architecture
(MEN) was proposed in [47], which combines three fundamentals components for an MET, including
network densification, mobile edge caching, and MEC. Challenges of the proposed architectures were
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also represented, which are network interworking, methods to evaluate performance of the proposed
MEN, prediction and optimization of communication (i.e., access, fronthaul, and backhaul) links, and
software-defined networking based control and communication schemes. Different from this work,
where aerial and ground layers are connected with each other, the architecture in our work is proposed
from the perspective of MEC and HetNets, where each MU can be served by either SBS, MBS, or
flying UAV-supported BS, and the communication between any two SBSs and MBSs can be via either
wireless backhaul or wired link. Moreover, many studies have been devoted to the optimization of
UAV-HetNets, for example, capacity enhancement in [48], delay minimization in [49], and caching
capability in [50].

4.3. Proposed Architecture: MEC-Empowered UAV-Assisted Heterogeneous Networks

Given the importance of MEC and HetNets, the 5G network will be highly integrative with a
focus on the integration of MEC and HetNets, the coexistence of both wireless and wired backhaul for
the deployment of MEC, and support of UAVs for catastrophe and emergency scenarios as well as
enhancing the connection availability. We will envision a holistic architecture for MEC-empowered
UAV-assisted HetNets.

Figure 3 demonstrates our envisioned architecture of MEC-empowered HetNets with the
consideration of various communication and computation resources. It is worth noting that the
MBS can be a wireless cellular tower, which is shared among multiple network operators to physically
collocate their individual BSs. Therefore, the network operators of small cells may be different. To
provide contents and services to MUs, the MBS is linked to one or a group of MEC servers through
the dedicated fiber links. As aforementioned, the integration of MEC and HetNets supports the
coexistence of both conventional wired and wireless backhaul in order to flexibly adapt to the actual
network state for deploying small cells. For instance, due to the hard-to-reach deployment location,
the small cells 1 and 3 connect to the macrocell by wireless backhaul links, whereas the small cell
2 can forward and receive data from the macrocell via a conventional wired backhaul connection.
In this context, computations of MUs in the small cells 1 and 3 are firstly offloaded to the MBS via
wireless backhaul links and then to the MEC server via fiber connections. As opposed, since the
small cell 2 connects to the macrocell through the wired backhaul, MUs associated with the small
cell 2 can ignore the offloading time over the wired backhaul. Similarly, MU 1 directly associates
with the MBS, the computational time is therefore composed of the offloading time (the transmission
time from itself to the MBS) and the computation time (due to the limited computing resources at
the MEC server), i.e., the offloading time from the MBS to the MEC server over fiber links is entirely
neglected. The majority of the existing literature on MEC networks are almost completely reliant on
the assumption of infinite backhaul capacity that would, however, be improper in traditional multi-cell
networks (due to the deployments cost of the backhaul links and heavy burden in the exchange for
communication transportation), and that is further exacerbated in MEC empowered HetNets (due
to big-data computation tasks and strict completion deadline). Because of the backhaul capacity
constraints, the resource management problem should allocate the bandwidth for transmissions over
access links and backhaul connections as well as considering other features such as task characteristics
and heterogeneous computation capabilities.

The proposed architecture also supports the coexistence of conventional central clouds and
distributed MEC to guarantee the availability of cloud services over the whole network. On the one
hand, big-data and stateless applications would be better served by centralized clouds. As opposed to
MEC servers, central clouds have much more powerful computation capabilities so that the massive
number of huge signal tasks can be processed in a centralized fashion. However, traditional cloud
computing centralization may lead to some limitations, e.g., high latency and burden on fronthaul links.
On the other hand, distributed MEC is more suitable for novel applications and services like real-time
video gaming, IoT, and mobility-related and location-aware applications. In the envisioned architecture,
the macrocell is connected to centralized clouds through fiber-optic backbone networks [51]. In cloud
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radio access networks (C-RANs), the BS is composed of distributed remote radio heads (RRHs)
and the centralized baseband unit (BBU), which is responsible for the baseband signal processing
functionalities. Multi-tier computing architecture can be designed in C-RANs, where the cloud centers
are collocated at the central BBUs and the edge servers are deployed at the distributed RRHs (e.g.,
macro-RRHs and small-RRHs). With this hierarchical architecture, MUs can exploit various computing
servers with heterogeneous computation capabilities. Moreover, computing servers at the same and
even different tiers can collaborate to execute enormous computations so as to improve the computing
performance. Note that central servers can be integrated into the cellular networks; they, however, can
be standalone like Amazon Web Service, Microsoft Azure, and Google Cloud Platform.
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Figure 3. Proposed architecture of MEC-empowered HetNets.

To augment the computation capabilities of the MEC-empowered HetNet and guarantee the
coverage and services for natural disaster and emergency situations, UAV-mounted BSs with
computation resources are considered as a part of the envisioned architecture. Two potential use
scenarios are considered in the following as demonstrations of UAV-enabled MEC-empowered HetNets.
First, since after a great earthquake, the traditional terrestrial communication infrastructure can be
either damaged or partially dysfunctional, UAVs could be used (i) to collect information, e.g., pictures
of buildings and factories, for remote assessments of site damage; (ii) to find people in the aftermath
of the earthquake for emergent rescue operations; and (iii) to provide fundamental services to MUs.
Another use case of UAVs is for crowd events such as a soccer match. During the game, the existing
MEC servers may not be able to satisfy massive computations and to provide additional services;
therefore, more UAV-mounted MEC servers could be used (i) to carry out the surveillance of illegal
activities and (ii) to generate 360-degree football match in virtual reality.

Similar to the task offloading from MUs to the MEC server, MUs can, either directly or indirectly,
offload to the UAV-mounted MEC server. For instance, since there does not exist any SBS/MBS for MU
1 to associate, the UAV adjusts its altitude and location close to and handle MU 1’s computation tasks,
MUs in the small cell 3 can offload their computation tasks to the UAV-mounted MEC server through
the SBS 3 in the meanwhile. Recently, free-space optical (FSO) communication is very attractive
for a wide range of applications including the backhauling/fronthauling for wireless networks [52].
Major advantages of FSO communication come from ease of deployment, license-exempt long-range
operation (up to several kilometers), high data rate (beyond 10 Gbps), robustness to electromagnetic
interference, increased security, and full-duplex operation [39,52]. We propose utilizing FSO links
for the fronthaul between the UAV and SBS. It is stressed again that the UAV cannot endure over
a long time due to its finite on-board energy, thus being not able to process energy-hungry tasks.
In this scenario, the UAV can act as a cellular-connected user and offload its computationally heavy
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tasks to the ground MEC server for computation execution. Furthermore, the UAV can establish
the FSO backhaul link with the ground control station (GCS) to receive control signals and feedback
collected information and statistic data. Similar to multi-tier computing, UAVs can be orchestrated to
multi-coverage scales when flying vehicles are positioned at different altitudes (low-altitude as a UAV,
mid-altitude as a balloon, and high-altitude as a satellite).

4.4. Open Challenges and Potential Works

Potential capabilities of MEC and HetNets converge on the proposed architecture of
MEC-empowered HetNets with the integration of both wired and wireless backhaul and the UAV
consideration, and, at the same time, the envisioned architecture introduces new challenges and open
research issues.

4.4.1. Challenge 1: Joint Interference Management and Offloading Decision

In HetNets, the wireless backhaul capacity could be seriously degraded when ICI becomes
significant. On the one hand, the wireless backhaul is able to support rates of several Gbps that
is, however, much more stringent compared to that of the traditional wired backhaul, which can
provide rates of hundreds of Gbps. On the other hand, while the wired backhaul capacity is fixed,
it is highly flexible to allocate the bandwidth resource for the wireless backhaul. For instance, the
macrocell provides wireless backhaul for multiple small cells and simultaneously allocates resources
to different wireless backhaul connections, e.g., bandwidth partitioning for wireless and access
transmissions and time division for different small cells sharing the same backhaul with the macrocell.
In MEC-empowered HetNets, the transmit power of SBSs and bandwidth partitioning factor jointly
affect the wireless backhaul capacity; the offloading decision should be determined according to,
for example, computation task characteristics, the transmit power of SBSs, the bandwidth allocation
factor, and the maximum computational capability at the MEC server. In other words, a joint problem,
where interference management, offloading decision, and resource (bandwidth and computation)
allocation problem are jointly optimized, is needed to improve the network performance.

As ICI is the major obstacle to gain high performance in conventional multi-cell networks as well as
MEC-empowered HetNets, this calls for efficient schemes to mitigate ICI among adjacent MEC servers.
Several techniques can be utilized to avoid ICI in MEC-empowered HetNets, as described below.

Fractional Frequency Reuse (FFR): The basic mechanism of FFR is to partition the cell space into
multiple regions and assigns each region a distinct frequency band. In such the way, the cell-edge
users do not interfere with cell-center users and may not interfere with cell-edge users of adjacent
cells, thus improving the quality of receive signals. Through the optimal FFR, inter-cell and intra-cell
interference can be significantly reduced.

Power Control: To harness ICI, adaptively adjusting the transmit power of MUs is usually used
in the literature. This is simply because increasing the transmit power of an offloading MU can increase
the transmission rate and the offloading time as well. Hence, the task’s completion deadline is not
violated and the MU can benefit from computation offloading. Nevertheless, increasing the transmit
power would seriously interfere with MUs in other cells and, as a consequence, MUs are not profitable
from remote execution while the computation tasks cannot be handled locally due to the limitation on
device capabilities. Therefore, compared to single-server MEC networks, power control in multi-server
MEC networks are more difficult to resolve because of (i) the coupling with the offloading decisions of
MUs in adjacent MEC servers and (ii) the computation task requirements.

3D Beamforming: Most research on MEC simply assumed that the output result size is small
and the downlink transmission from the MEC servers is with the high transmit power, so the
downlink latency and energy consumption for the return of computational results back to the MU are
negligible [1]. This would not be correct all the time, where the computational result is comparable and
the downlink transmission must be considered. On the one hand, a large number of MUs can instantly
request computation offloading and the output can be multicast from the MEC server for a group of
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MUs, e.g., in augmented reality applications [53]. On the other hand, MUs can be distributed over not
only the horizontal space but also the vertical dimension, such as in urban areas with many skyscrapers.
In such a case, 3D beamforming is particularly suitable due to the capability to dynamically control
the radio patterns on both vertical and horizontal dimensions (i.e., adapting different downtilts for
center-zone and edge-zone MUs). One interesting idea is to consider the joint optimization of downlink
and uplink with the optimal control of the transmit power of the MEC servers and the antenna downtilt.

Optimization of UAV Deployment: UAVs can be deployed in cellular networks as either flying
MUs in the cellular-connected communication mode or UAV-mounted MEC servers in the UAV-assisted
wireless communication mode. However, the UAV transmission may cause ICI to ground MUs
in other cells or the transmission for UAV can interfere with other MUs in the uplink. Successful
implementations of UAVs could be possible if the challenges of interference management are addressed.
An effective solution is to optimize the UAV trajectory so that UAVs can establish the line-of-sight
connectivities to the associated terrestrial BS (in the cellular-connected mode) or the ground MUs (in
the UAV-assisted mode), and concurrently avoid interference to ground MUs. This could provide
substantial gains such as increasing the transmission rate and benefits for the ground MUs from
computation offloading. An alternative approach is to enable UAVs to associate with the best ground
server thanks to the dense deployment of MEC servers. Transmit power of UAVs can be also optimized,
thus alleviating ICI, and boosting the UAV endurance. While the high controllable mobility of UAVs
offers many opportunities to optimize the network, it poses the challenges of distributed, online, and
autonomous algorithms for resource allocation in UAV-enabled MEC networks.

4.4.2. Challenge 2: Joint User Association and Offloading Decision

In practice, small cells connect to the macrocell through distinct backhaul solutions. For small
cells with wireless backhaul, besides the bandwidth partitioning factor, the transmit power is of critical
importance in determining the backhaul capacity [1]. Additionally, small cells are densely deployed
in the 5G network and an MU may be under the coverage of multiple small cells. Therefore, each
offloading MU needs to select its preferred SBS with regard to the quotas of different cells, channel
conditions, and backhaul qualities. To find the offloading decision of MUs in a cell, the corresponding
BS can optimally partition the bandwidth such that the backhaul capacity constraint is not violated
and the computation resource at the MEC server is fairly shared among offloading users.

Since the centralized optimization of offloading decisions requires that all MUs report their local
information to the central entity, which may result in the huge network-wide computation overhead.
In addition, heuristic schemes are often adopted to solve the centralized computation offloading
and the central entity is not always feasible in wireless networks. Therefore, distributed approaches
are highly desirable, where each MU can independently decide the offloading decision with local
information only and/or limited information exchange. In such contexts, matching theory, game
theory, and machine learning are promising tools [1], where the individual objective captures the
channel qualities, task characteristics, and the cost of backhaul links. One must consider that the
design of computation offloading policies should take account of the network dynamics such as the
highly time-varying channel qualities, the dynamic task arrival rate, the number of users requesting
for task offloading, and the number of MEC servers. In addition, the integration of communication,
computation, caching, and control is vital for the successful implementation of many applications and
services in the emerging 5G network. Therefore, one difficulty facing in dynamic MEC-empowered
HetNets is the long-term optimization of a huge amount of variables. Accordingly, conventional
techniques, e.g., one-shot optimization, become unsuitable, but long-term approaches, e.g., Markov
decision process and machine learning, are particularly suitable. For example, MUs determine the
offloading decisions and/or the server selection at the current network state by learning from the
interaction with other MUs and their past experience, machine learning can be used to enable MEC
servers to predict the MUs’ behaviors in order to efficiently allocate computation resource, and finally
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UAVs can use machine learning to optimize their trajectory and optimization variables such as the
transmit power and allocated computation resource.

4.4.3. Challenge 3: Hierarchical and Collaborative Computation Offloading

The development of 5G is mainly driven by three categories: enhanced mobile broadband,
massive IoT, and mission-critical services [29,54]. The first class targets at an extremely high data rate
and extreme capacity, the second one is to serve a massive number of IoT devices with requirements
of ultra-high density, ultra-low energy, and ultra-high scalability, and the last class aims for critical
applications with high requirements on strong security, ultra-high reliability and ultra-low latency
(ultra-reliable and low-latency communication uRLLC). In addition, massive and heterogeneous MUs
in the emerging 5G network are distinctly different in, e.g., battery size, computation capability, and
targeted applications. Consider a network with two IoT devices as the illustration; the former runs
an application with a requirement of ultra-low 1 ms end-to-end latency and the latter continuously
observes environmental conditions such as temperature, humidity, and pictures, and deliver to the
aggregator for processing the raw data. As opposed to the first IoT device, the second device can
generate big data with huge computation requirement for data processing but can be tolerant of
latency. In such a case, IoT devices (second one in the above example) with computation-intensive and
latency-tolerant applications prefer to offload their computations to the high-tier servers due to their
huge computation capabilities, e.g., central clouds and macro-MEC servers. In contrast, IoT devices
with latency-critical applications highly prefer to utilize the low-tier MEC servers due to the close
proximity, e.g., macro- and small-MEC servers.

Moreover, the MEC servers are likely to have comparable size and computation capabilities as a
desktop computer; therefore, some computation tasks cannot be strictly handled by only one MEC
server. This motivates different servers to collaborate in executing the same enormous computations
in order to improve computing performance. Hierarchical and collaborative computation will become
much more complicated when jointly optimizing with user association and resource allocation for
wireless backhaul. Furthermore, compared to MUs with latency-tolerant applications, those with
latency-sensitive applications get higher priorities to access the MEC server with higher computation
resources and better connection qualities.

4.4.4. Challenge 4: Joint User Association and MEC Server Selection

When the MBS is a multi-operator wireless tower, it is possible that multiple MEC servers are
physically collocated in the same site. Besides the user association problem due to the various backhaul
solutions, an efficient scheme to select the suitable MEC server for offloading users is highly necessary
to investigate. For single-user networks, MUs strongly prefer to connect with the small cell with
wired backhaul and the best channel quality and then offload to the MEC server with the highest
computation capability. However, the practical network scenario is multi-user and small cells normally
have the limited quota of few users [1]. Consequently, one can design that each MU acts according to
its own interest and makes the offloading decision independently as in non-cooperative game, where
each MU always tries to maximize its own benefit by selecting the best small cell and MEC server, with
the objective of, for example, minimizing (1) the energy consumption subject the maximum latency
and (2) the computation time with the power budget constraints.

4.4.5. Challenge 5: NOMA-Assisted MEC Networks

MEC was originally proposed to improve the computation capabilities of computation- and
battery-limited end devices so that various computation-intensive and latency-critical applications can
be deployed. By 2020, the number of devices connected to the Internet will exceed 50 billion and there
will be more than several hundred millions of sensors deployed in the world. One can foresee that a
large number of devices simultaneously integrate their computation-intensive tasks into a single MEC
server. To serve multiple MUs, bandwidth and time resources can be divided into orthogonal parts
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and assigned to different MUs for computation offloading. Recently, some studies on non-orthogonal
multiple access (NOMA) enabled MEC networks have reported that the combination of NOMA and
MEC can reduce the energy consumption and latency [55,56]. However, existing works are limited to
specific scenarios of single-server MEC networks. For example, considering the set of offloading users
and no ICI, the energy consumption of offloading users is minimized through jointly optimizing user
clustering, resource allocation, and transmit power control per cluster [55].

As more and more MEC servers are deployed, ICI becomes the major obstacle since ICI strictly
limits the performance of cell-edge users. To achieve the full benefits of NOMA in MEC-empowered
HetNets, user clustering, power allocation, and user scheduling (UCPAUS) are important issues, which
are however coupled with each other, thus solving the problem really challenging [57]. One solution is
to consider only one cluster in each cell and then allocate the transmit power of MUs [58]. However,
this solution has an immense complexity because signals of all the same-cell MUs are superimposed at
the transmitter side and largely-superimposed signals are decoded at the receiver side. An alternative
solution is to have multiple clusters in each cell, assign each cluster to a subchannel, and adapt power
allocation in each cluster. This could reduce the complexity and hardware requirements compared to
the single-cluster approach, but sub-optimal in the performance. The joint UCPAUS problem becomes
highly complicated in MEC-empowered HetNets, as explained below. First, each MU must decide to
offload or not in the case of binary offloading or determine the fraction of offloadable computation in
the case of partial offloading. Second, determining the optimal number of clusters and how to select
MUs to form a cluster is non-trivial. For instance, a clustering scheme can assign two latency-critical
MUs to a cluster and two other latency-tolerant MUs to another cluster; this could improve the network
performance, but the completion deadlines of latency-critical MUs may not be met [56]. Therefore, one
suitable solution is to group one latency-critical MU with one latency-tolerant MU together. Lastly,
the performance of MEC networks is highly affected by the computation resource allocation at MEC
servers. As a result, studies on offloading decision, user clustering, and resource allocation are strongly
desired to further improve the performance of NOMA-enabled MEC networks, which require efficient
but close-optimal schemes for the successful deployment of MEC and NOMA in the emerging 5G
network and beyond.

In summary, in MEC-empowered UAV-assisted HetNets, user association is of central importance
since MUs can choose their preferred small cells to associate with and offload to. This is motivated
by heterogeneous wireless backhaul solutions among different small cells. In addition, computation
resource allocation should receive enough attention since the task requirement and computation
overhead are highly affected by the assigned resource. We must stress that our main focus in this
paper is on an envisioned architecture of MEC-empowered UAV-assisted HetNets. However, many
unexplored issues need to be thoroughly considered and discussed, e.g., content caching and delivery,
implementation of real applications such as augmented and virtual reality, optimal deployment of
MEC servers, and planning MEC networks with UAVs (i.e., how many UAV-mounted MEC servers are
needed to provide satisfactory computation to MUs and how to place UAV-mounted MEC servers in a
geographical area). This calls for further efforts from the research community for issues and challenges
in MEC-empowered HetNets.

5. Conclusions

In this article, we have described the evolution of computation offloading and resource allocation
in single-server and multi-server MEC networks. This has been followed by our envisioned architecture
of MEC-empowered UAV-assisted HetNets, which is able to support the integration of both wired
and wireless backhaul, the coexistence of conventional central clouds and distributed MEC, and the
deployment of UAVs as flying-MEC servers. Finally, we have highlighted several challenges and open
issues stemmed from our proposed architecture.
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