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Abstract: The unmanned aerial vehicle (UAV) enabled mobile edge computing (MEC) system is
attracting a lot of attentions for the potential of low latency and low transmission energy consumption,
due to the advantages of high mobility and easy deployment. It has been widely applied to provide
communication and computing services, especially in Internet of Things (IoT). However, there are
still some challenges in the UAV-enabled MEC system. Firstly, the endurance of the UAV is limited
and further impacts the performance of the system. Secondly, mobile devices are battery-powered
and the batteries of some devices are hard to change. Therefore, in this paper, a UAV-enabled MEC
system in which the UAV is empowered to have computing capability and provides tasks offloading
service is studied. The total energy consumption of the UAV-enabled system, which includes the
energy consumption of the UAV and the energy consumption of the ground users, is minimized
under the constraints of the UAV’s energy budget, the number of each task’s bits, the causality
of the data and the velocity of the UAV. The bits allocation of uploading data, computing data,
downloading data and the trajectory of the UAV are jointly optimized with the goal of minimizing
the total energy consumption. Moreover, a two-stage alternating algorithm is proposed to solve the
non-convex formulated problem. Finally, the simulation results show the superiority of the proposed
scheme compared with other benchmark schemes. Finally, the performance of the proposed scheme
is demonstrated under different settings.

Keywords: wireless communication; unmanned aerial vehicles; mobile computing; mobile edge
computing; offloading; computation; bits allocation; trajectory design

1. Introduction

With the technological evolution of user devices, the computation-intensive and latency-critical
applications, such as virtual reality, face recognition and Industrial Internet of Things (IIoT),
have become more and more popular. However, the requirements of high quality communications have
simultaneously posed big pressure on the user devices [1,2]. Although the user devices are equipped
with powerful central processing unit (CPU), they are not able to deal with the ever-increasing amount
of data. Mobile cloud computing (MCC) gives the chance to overcome the computing difficulties of
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users, which can offload some computation tasks to the resource-rich cloud infrastructures and relieve
the computing pressure for users [1].

The latency and the energy consumption of the user devices are reduced owing to the popularity
of MCC. Nevertheless, the cloud infrastructures are not always located nearby the user devices, which
causes the huge additional load and long latency [2]. Then, the concept of mobile edge computing
(MEC) is introduced. MEC offers the capacity of storage and processing by deploying cloud resources
in proximity to the user devices [3]. In the MEC framework, mobile devices can offload their tasks to
the MEC servers on the edge of the network, rather than utilizing the core network [3,4]. MEC brings
the opportunity to reduce the energy consumption and the long latency caused by the long-distance
transmission between user devices and remote servers.

MEC enables the mobile base station (BS) to be equipped with powerful computing capability,
which significantly relieves the pressure of mobile networks. However, in the areas where the
communication facilities are sparsely distributed, especially in IoT, the fixed MEC server can not satisfy
the computation requirements of the remotes users. Besides, when communication infrastructures
are damaged, malfunctional or overloaded, the computing tasks of the users can not be processed
in time. Hence, it is necessary to devise a scheme that the MEC servers can satisfy the computation
demand in a timely fashion. Fortunately, UAVs have the characteristics of high mobility and easy
deployment, making the on-demand communication services provision possible [5,6]. Recently, UAVs
have attracted a lot of attention in many applications, such as delivery, farming, rescue response
and communication services [7]. UAVs are expected to play the role of wireless communication
platforms equipped with communication modules [8]. An UAV-enabled MEC system can provide
on-demand computation services for the mobile users with on-demand mobility compared with the
fixed communication infrastructures. In the areas where the fixed communication infrastructures can
not satisfy the computing requirements of ground users, such as the places which are remote from
the communication facilities and the places destroyed by the natural disasters, the advantages of
UAV-enable MEC system are highlighted. The UAV is capable of flying to the specific areas to help the
users with computational requirements, e.g., monitoring devices, to compute the tasks. Owing to the
on-demand mobility, the UAV-enabled MEC system can greatly relieve the load of computation in the
specific areas.

Despite the advantages UAV-enabled MEC systems bring, there are still some challenges.
Among these challenges, the most typical and urgent one is the energy-efficient problem. UAV’s
time of endurance is finite due to the limitation of the battery technology [9]. The duration of flight is
also affected due to the payload and the energy consumption of the communication and computation
in a UAV-enabled MEC system. Moreover, the mobile devices are always battery-powered, which
compromises the performance of offloading owing to the long-distance transmission. It is difficult
to change the batteries of the mobile devices in some areas which are hard to reach, e.g., monitoring
devices in IoT [10,11]. Therefore, it is necessary to design an energy-efficient UAV-assisted MEC system
in order to minimize the energy consumption of both the UAV and mobile devices.

1.1. Related Work

The first concept of edge computing is proposed in 2009, which is named cloudlet [2,12]. There has
been a lot of research about MEC in recent years, concerning the energy consumption, latency and so on.
In [4], the authors designed an energy-efficient MEC offloading mechanism for mobile devices in 5G
heterogeneous networks. The mechanism aimed at minimizing the system’s energy consumption and
ensuring the latency constraints of the computation task. Authors in [1] proposed an algorithm aiming
at solving the minimum energy consumption problem in deadline-aware MEC system. The mobility
of the mobile devices was also considered in the deadline-aware MEC system. In addition to the
energy-efficient mechanisms, the latency is also investigated. In [10], an effective dynamic computation
offloading scheme for energy harvesting mobile devices was proposed, aiming at minimizing the
execution cost which consists of execution delay and task failure.
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Although MEC reduces the energy consumption and latency compared with MCC, it is difficult
to satisfy the communication requirements of mobile users in some specific areas, such as hotspot
areas or the areas where the communication facilities are distributed sparsely. UAV is recognized
to be one of promising wireless communication platforms due to the advantages of high mobility
and easy deployment [13]. UAVs, acting as flying base stations or relays, have attracted people’s
attention in recent years. The placement of the UAV to maximize the coverage has been studied
in a lot of research. In [14], the optimal altitude of the UAV-based base station was analyzed for
the maximal communication coverage. In [15], an efficient UAV 3D placement with the purpose
of maximizing the covered users based on the optimal altitude was proposed. In [16], the authors
studied a novel 3D UAV placement with the objective of maximizing the number of covered users
according to different requirements of quality of service (QoS). Besides, the energy consumption of
both the UAV and mobile users have also been taken into consideration. In [17], the propulsion energy
consumption model of the fixed-wing UAV was derived and an efficient trajectory maximizing the
UAV’s energy efficiency was designed. In [11], given the locations of active devices, the optimal
locations of the UAVs and the associations with devices were determined with the objective of
minimizing the transmission power of devices. Moreover, the resource management of the UAV-aided
communications has also been investigated. In [18], an energy efficient solution in UAV-supported
multi-level architecture is employed by grouping uer equipments in clusters based on reinforcement
learning. In [19], based on the above cluster solution, the authors proposed a framework that combined
UAV-support with wireless powered communication (WPC) techniques to further improve energy
efficiency in a distributed non-orthogonal multiple access (NOMA) public safety networks (PSN).
The optimal position of the UAV in the Euclidean 3D space was determined by maximizing the
coalition head’s total energy availability. In [20], a game theoretic framework for load balancing
between LTE-Unlicensed unmanned aerial base stations (UABSs) and WiFi access points (APs) based
on the loads at the UABSs and the ground APs was proposed. In [21], a framework for the coverage
and rate analysis was derived, considering the coexistence between the UAV as a flying base station,
and an underlaid device-to-device (D2D) communication network. The framework considered two
scenarios: a static UAV and a mobile UAV. The overall outage probabiliy of the D2D users was derived
considering multiple retransmissions for the UAV and D2D users.

UAVs endowed with computing capabilities have become more and more popular in recent years,
owing to the on-demand communication services provision and flexible deployment. The study of
latency has been one of the research directions. The objective of [22] was to minimize the sum of the
maximum delay among all the users in each slot. The trajectory of the UAV, the ratio of offloading
task and the user scheduling variables were jointly optimized. In addition, energy efficient schemes
have attracted wide attention due to the battery technology limitation of the mobile devices and
the UAVs. In [23], the energy consumption of the mobile users was minimized considering two
types of access schemes, namely, orthogonal and non-orthogonal access. The bits allocation and the
trajectory of the UAV were jointly optimized. However, the energy efficient algorithms of the UAVs,
which significantly influence the performance of the UAV-enabled MEC system, were not considered.
The authors in [24] studied the minimization problem of the weighted sum energy consumption
of the UAV and users. The computation resources scheduling, the bandwidth allocation and the
trajectory of the UAV were optimized in the minimization problem. In [25], a UAV-enabled wireless
powered MEC server was studied to minimize the energy consumption consumed at the UAV. In [26],
the weighted sum computation bits were maximized under both the partial and binary offloading
mode in UAV-enabled wireless powered MEC system. However, the energy consumption constraint
of the UAV was not taken into consideration in [24–26]. The energy consumption of the UAV impacts
the duration of flight and then impacts the performance of the UAV-enabled MEC system. Hence, it
is necessary to design an energy-efficient UAV-enabled MEC systems considering both the energy
consumption of the UAV and mobile devices.
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1.2. Contribution and Organization

Different from the aforementioned study, this paper proposes an energy-efficient UAV-enabled
MEC system with the objective of minimizing the total energy consumption of the system. Moreover,
the constraints of the UAV energy budget, the number of each task’s bits, the causality of the data,
and the velocity of the UAV are taken into consideration. The bits allocation and the trajectory of the
UAV are jointly optimized under the constraints. Besides, an alternating algorithm is designed to solve
the non-convex optimization problem. The main contributions are described as follows:

• An energy-efficient scheme subjecting to the constraints of UAV’s energy budget, the number
of each task’s bits, the causality of the data, and the velocity limitation of the UAV is proposed.
The aim of the problem is to minimize the total energy-consumption of the UAV-enabled MEC
system, which includes the energy consumption of the ground users and the UAV. The bits
allocation and the trajectory of the UAV are cooperatively optimized.

• A two-stage alternating algorithm is presented to solve the optimization problem. The formulated
optimization problem is non-convex due to the non-convex objective function and non-convex
constraints. The dual variables also enhance the difficulty of the problem. To solve the
optimization problem, an alternating algorithm is proposed. The subproblems are solved by
Lagrange duality method and CVX solver respectively.

• The simulation results are shown to indicate the superiority of the proposed scheme compared
with other benchmark schemes. In contrast to the fixed trajectory of the UAV, the energy
consumption of the proposed scheme is greatly decreased. Besides, the performance of the
proposed scheme is also demonstrated under different settings.

The remainder of this paper is organized as follows. Section 2 sets up the system model and
formulates the optimization problem. An alternating algorithm to solve the optimization problem
is designed in Section 3. Then, the simulation results are shown in Section 4. Finally, the paper is
concluded in Section 5.

2. System Model and Problem Formulation

The offloading modes of MEC include binary offloading and partial offloading [27]. In the first
mode, the computation task cannot be partitioned, which can only be computed locally or offloaded
wholely. In the last mode, a part of the computation task can be computed locally and the other part
offloaded. In this paper, we only consider the binary offloading mode to relieve the computation load
of the users. Considering the superiority of rotary-wing UAV’s agility in turning, the rotary-wing UAV
is assumed to provide offloading services in this paper. The UAV-enabled MEC system is depicted
in Figure 1, consisting of one UAV-enabled MEC server and K users denoted as K , {1, 2, 3, . . . , K}.
Moreover, taking the energy constraints of the UAV and the short task deadline of ground users into
consideration, the area where the UAV-enabled MEC system can provide offloading services is not
large. Thus, it is assumed that the ground users are not distributed over a large area and the ground
users are always in the communication range of the UAV. The scenario that the ground users are
distributed over a large scale will be further investigated in our future work.
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Figure 1. UAV-enabled MEC system.

2.1. System Model

The notation of user k’s task is denoted as Ak(Ik, τk, Ck, Ok). Ik means the task input-data size of
user k in bits. τk means the task deadline of user k. Ck represents the computation/intensity of user
k, i.e., the number of CPU cycles needed to compute one input bit for user k. Ok is the ratio of the
number of output information bits to the number of input information bits for user k. The minimal task
deadline of all the K users is considered as the time duration T of the UAV-enabled MEC system to
finish the offloading tasks. The K users offload their computation tasks using a time division multiple
access (TDMA) mode. The time duration T is divided into N slots, whose duration is ∆ = T

N . Each slot
∆ is divided into K sub-slots, whose duration is δ = ∆

K = T
NK . The slot and sub-slot are depicted as

Figure 2. To reduce the additional noise from other users when user k is transmitting the data to the
UAV and receiving the data from the UAV, user k only uploads its input information and the UAV
only downloads the output results for user k in the kth sub-slot in each slot. The symbols used in the
system model are listed in Table 1.

In this paper, a three-dimensional Euclidean coordinate is adopted without the loss of generality,
which is measured in meters. The mobile users are located on the ground, whose coordinate is
expressed as qk = (xk, yk, 0) for k ∈ K. A UAV mounted with MEC server provides the computation
services for the mobile users in the altitude h. The position of the UAV at the end of nth slot is
expressed as qu[n] = (xu[n], yu[n], h), which is considered as the position of the UAV in nth slot. We
assume that the communication link between the UAV and the ground user is dominated by the line
of sight (LoS) channel. The UAV-ground channel is more likely to have the LoS link compared to the
terrestrial ground-ground channels. Besides, the Doppler effect due to the UAV mobility is assumed to
be compensated [17,28]. Hence, the channel gain from the ground user k to the UAV in the nth slot
follows the free-space loss model, which is given by [29,30]

gk[n] =
g0

h2 + ‖qu[n]− qk‖2 , (1)

where g0 is the channel power gain at reference distance 1 m. From (1), it can be observed that
optimizing the 2D position of the UAV (xk, yk) has the same effect of optimizing the altitude of the
UAV. Therefore, for ease of explanation, we assume that the UAV fly at a fixed altitude H and ingore
the slight altitude changes.

The energy consumption of the UAV-enabled MEC system is consisted of two parts: the energy
consumption of the UAV and the energy consumption of the ground users. Hence, the total energy
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consumption of the system E is the sum of the energy consumption of the UAV and the energy
consumption of the ground users, which is given as:

E = EG + EU . (2)

Table 1. List of symbols.

Symbol Description

K, k The set of ground users, k ∈ K
K Number of ground users
Ak The notation of user k’s task
Ik Task input-data size of user k
τk Task deadline of user k
Ck Number of CPU cycles needed to compute one input bit of user k
Ok Ratio of the number of output bits to the number of input bits for user k
T Time constraint of the tasks
N Number of time slots of T
∆ Time duration of one slot
δ Time duration of one sub-slot

qk Location of user k
qu[n] Location of the UAV in nth slot
v[n] Velocity of the UAV in nth slot
Vmax Maximal velocity of the UAV

h Variable of the UAV’ altitude
H Fixed altitude of the UAV
B Communication bandwidth
σ2 Noise power at the receiver
g0 Channel power gain at reference distance 1m

gk[n] Channel gain from the ground user k to the UAV in nth slot
Iu
k [n] Number of uploading bits of user k in nth slot

Ic
k [n] Number of computing bits of the UAV for user k in nth slot

Id
k [n] Number of downloading bits from the UAV to user k in nth slot

fU,k[n] Frequency of the UAV’s CPU in the nth slot for computing the tasks of user k
fu[n] Frequency of the UAV’s CPU in the nth slot

Ec
U,k[n] Computation energy consumption of the UAV for ground user k in the nth slot
γu Effective switched capacitance of the UAV’s CPU
κ Coefficient of the flying energy consumption (κ = 0.5M∆)
E Total energy consumption of the UAV-enabled MEC system

EG Energy consumption of K ground users
EU Energy consumption of the UAV
EU

G Communication energy consumption for uploading data of the ground users
EC

U Computing energy consumption of the UAV
EF

U Flying energy consumption of the UAV
ED

U Energy consumption of downloading the results from the UAV to ground users
Iu∗
k [n], Ic∗

k [n], Id∗
k [n] Optimal number of Iu

k [n], Ic
k [n] and Id

k [n] under the given trajectory of the UAV
λ, µ, ν, ρ, β, η Dual variables according to the constraints (21b)–(21k)

λj, µk,j, νk,j, ρk,j, βk,n,j, ηk,n,j Dual variables at the jth iteration in the subgradient method

α
(λ)
j , α

(µ)
j , α

(ν)
j , α

(ρ)
j , α

(β)
j , α

(η)
j jth step size computed in subgradient algorithm

g(λ)j , g(µ)j , g(ν)j , g(ρ)j , g(β)
n,j , g(η)n,j Subgradients calculated by (25a)–(25f)
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Figure 2. The slots and sub-slots in time division multiple access (TDMA).

2.1.1. Energy Consumption Model of Ground Users

In the binary mode of the UAV-enabled MEC system, all the K users upload their computation
tasks to the UAV and the ground users have no local computing tasks. Consequently, the energy
consumption of the ground users EG only depends on the communication energy consumption for
uploading data of the ground users EU

G as given [30,31]:

EG = EU
G =

N

∑
n=1

K

∑
k=1

2
Iu
k [n]
Bδ − 1
gk[n]

σ2δ, (3)

where B and σ2 denote the communication bandwidth and the noise power at the receiver respectively;
Iu
k [n] represents the number of uploading input bits of the user k in the nth slot.

2.1.2. Energy Consumption Model of the UAV

The energy consumption of the UAV consists of three parts: the energy consumption of
computation EC

U , the energy consumption of flying EF
U and the energy consumption of downloading

the output results to the ground users ED
U , which is shown as

EU = EC
U + EF

U + ED
U , (4)

After the ground users uploading the input data to the UAV, the UAV will execute the computation
immediately. The frequency of the UAV’s CPU in the nth slot for computing the tasks of user k depends
on the number of computing bits for user k in the nth slot, which is expressed as

fU,k[n] =
Ic
k [n]Ck

∆
, (5)

where the Ic
k [n] is the number of the computing bits at the UAV in the nth slot for ground user

k. The computing energy consumption of the UAV depends on the frequency of the CPU. Thus,
the computation energy consumption of the UAV for ground user k in the nth slot is shown as

EC
U,k[n] = ∆γu( fU,k[n])3 = γu

(Ic
k [n])

3C3
k

∆2 , (6)

where γu is the effective switched capacitance of the UAV’s CPU [23,25,26,32,33]. The total energy
consumption of computation in all slots of the UAV is calculated as

EC
U =

N

∑
n=1

K

∑
k=1

γu
(Ic

k [n])
3C3

k
∆2 . (7)
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The flying energy consumption of the UAV in slot n depends on the velocity v[n] and the weight
of the UAV M. The total energy consumption for propulsion of the UAV in all slots is given as

EF
U =

N

∑
n=1

κ‖v[n]‖2, (8)

where κ = 0.5M∆ and M is the weight of the UAV [34–37]. The velocity of the UAV in nth slot can be
calculated as the distance difference in nth slot divided by the time duration of one slot ∆. And the
distance difference of the UAV in nth slot is related to the position of the UAV in nth slot qu[n] and in
(n− 1)th slot qu[n− 1]. Thus, the velocity of the UAV in nth slot v[n] is expressed as

v[n] =
qu[n]− qu[n− 1]

∆
, n = 1, 2, . . . , N. (9)

And the value of the UAV’s velocity in nth slot should be lower than the maximal velocity of the UAV
as expressed as

‖v[n]‖ = ‖qu[n]− qu[n− 1]‖
∆

≤ Vmax, n = 1, 2, . . . , N. (10)

where Vmax denotes the maximal velocity of the UAV. The energy consumption of downloading the
output results from the UAV to the ground users is related to the number of downloading bits and the
channel gain, which is given as

ED
U =

N

∑
n=1

K

∑
k=1

2
Id
k [n]
Bδ − 1
gk[n]

σ2δ, (11)

where Id
k [n] denotes the number of the downloading bits from the UAV to the ground user k in the

nth slot.

2.2. Problem Formulation

The objective of the formulated problem is to minimize the total energy consumption of the
system, by joint optimizing the trajectory of the UAV qu[n] and the bits allocation Iu

k [n], Ic
k [n], Id

k [n].
In this paper, the initial position of the UAV is preset as the position of q1, and the final point of the
UAV is the position of qK, which are expressed as

qu[1] = q1, qu[n] = qk. (12)

All users offload their computation tasks to the UAV and the computing results should be
distributed to ground users in the duration of N slots. There are three steps for user k to offload
the task to the UAV: the ground user k uploads the task to the UAV, the UAV processes data for
user k, and the UAV downloads the computation results to the ground user k, as shown in Figure 3.
These three steps are conducted in time sequence. Consequently, the ground users do not upload the
input information in the last two slots. The UAV does not execute the computation tasks in 1st slot
and Nth slot. Moreover, the UAV does not download the computation results to the ground users in
1st slot and 2nd slot. Thus, considering the causality of the data and the chronological order, the bit
allocations follow the constraints:

n−1

∑
i=1

Iu
k [i] ≥

n

∑
i=2

Ic
k [i], n = 2, . . . , N − 1, (13)

Ok

n

∑
i=2

Ic
k [i] ≥

n+1

∑
i=3

Id
k [i], n = 2, . . . , N − 1, (14)

Iu
k [N − 1] = Iu

k [N] = 0, (15)
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Ic
k [1] = Ic

k [N] = 0, (16)

Id
k [1] = Id

k [2] = 0. (17)

X

Y
Z

Upload 
input data 

Process data

Download 
computation results 

User k

Figure 3. The slots and sub-slots in TDMA.

Moreover, the total number of the uploading bits of the ground user k, computing bits and
downloading bits of the UAV for the user k are expressed as follows:

N−2

∑
n=1

Iu
k [n] = Ik, (18)

N−1

∑
n=2

Ic
k [n] = Ik, (19)

N

∑
n=3

Id
k [n] = Ok Ik. (20)

The objective of the energy-efficient problem is to minimize the total energy consumption of the
UAV-enable MEC system. The bit allocations Iu

k [n], Ic
k [n], Id

k [n] and the trajectory of the UAV qu[n] are
jointly optimized, under the constraints of data causality, the velocity and the position of the UAV.
The corresponding energy consumption minimization problem P1 is formulated as

P1 : min
Iu
k [n],I

c
k [n],I

d
k [n],qu[n]

E (21a)

s.t. EU ≤ ε, (21b)
N−2

∑
n=1

Iu
k [n] = Ik, (21c)

N−1

∑
n=2

Ic
k [n] = Ik, (21d)

N

∑
n=3

Id
k [n] = Ok Ik, (21e)

n−1

∑
i=1

Iu
k [i] ≥

n

∑
i=2

Ic
k [i], n = 2, . . . , N − 1, (21f)
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Ok

n

∑
i=2

Ic
k [i] ≥

n+1

∑
i=3

Id
k [i], n = 2, . . . , N − 1, (21g)

Iu
k [N − 1] = Iu

k [N] = 0, (21h)

Ic
k [1] = Ic

k [N] = 0, (21i)

Id
k [1] = Id

k [2] = 0, (21j)

Iu
k [n], Ic

k [n], Id
k [n] ≥ 0, for k ∈ K and n ∈ N . (21k)

qu[0] = q1, qu[N] = qK, (21l)

‖qu[n]− qu[n− 1]‖
∆

≤ Vmax, for n ∈ N , (21m)

where ε denotes the energy budget of the UAV, and N , {1, . . . , N}. (21b) indicates that the energy
consumption of the UAV, including the computing energy consumption, communication energy
consumption and flying energy consumption, is lower than a certain energy budget. (21c), (21d) and
(21e) represent that all the ground users offload all the computation tasks to the UAV in the binary
mode. (21f)–(21k) ensure the data causality and the non-negative condition. (21l) guarantees that the
UAV initiates the flying trajectory at the position of q1 and stops at the position of qK. (21m) ensures
that the UAV flies under the constraint of the maximal velocity.

3. Algorithm Design

The problem of P1 is a non-convex problem due to the non-convex objective function (21a),
non-convex constraint (21b) and the coupling characteristics of the optimization variables. Thus,
in this paper, we bring forward a two-stage alternating algorithm to solve the non-convex problem.
The details of the two-stage alternating algorithm are shown in the following part.

3.1. Bits Allocation under Given Trajectory

It can be seen that with if the trajectory of the UAV is fixed, the problem of P1 is convex with
regard to the variables Iu

k [n], Ic
k [n], Id

k [n]. Given the trajectory of the UAV, the problem P1 can be
transformed into:

P2 : min
Iu
k [n],I

c
k [n],I

d
k [n]

EU + EG (22a)

s.t. (21b)− (21k). (22b)

Because P2 is convex, Lagrange duality method can be applied [38]. The optimal solution of P2 is
given in the following theorem. Iu∗

k [n], Ic∗
k [n] and Id∗

k [n] represent the optimal number of uploading
bits of user k in nth slot, the optimal number of computing bits of the UAV in nth slot for user k and
the optimal number of downloading bits from the UAV to the user k in nth slot respectively under the
given trajectory of the UAV.

Theorem 1. For a given trajectory of the UAV, the optimal bits allocation Iu
k [n], Ic

k [n], Id
k [n] can be expressed as:

Iu∗
k [n] =

 Bδ log2

(µk+
N−1
∑

i=n+1
βk,n)gk [n]B

σ2 ln 2 , n = 1, . . . , N − 2,
0, n = N − 1 or N,

(23a)

Ic∗
k [n] =

 ∆
Ck

√
νk+Ok

N−1
∑

i=n
ηk,n−

N−1
∑

i=n
βk,n

3(λ+1)γuCk
, n = 2, . . . , N − 1,

0, n = 1 or N,

(23b)
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Id∗
k [n] =

 Bδ log2

(ρk−
N−1
∑

i=n−1
ηk,n)gk [n]B

(λ+1) ln 2σ2 , n = 3, . . . , N,

0, n = 1 or 2.
(23c)

where λ, µk, νk, ρk, βk,n, ηk,n denote the dual variable related to the constraints (21b)–(21g) respectively.

Proof. See Appendix A.

The dual variables λ, µk, νk, ρk, βk,n, ηk,n in (23a)–(23c) are obtained with the subgradient
algorithm [39] as shown in Lemma 1.

Lemma 1. At the (j + 1)th iteration in the subgradient method, λj+1, µk,j+1, νk,j+1, ρk,j+1, βk,n,j+1, ηk,n,j+1
are obtained from

λk,j+1 = λk,j − α
(λ)
j g(λ)j , (24a)

µk,j+1 = µk,j − α
(µ)
j g(µ)j , (24b)

νk,j+1 = νk,j − α
(ν)
j g(ν)j , (24c)

ρk,j+1 = ρk,j − α
(ρ)
j g(ρ)j , (24d)

βk,n,j+1 = βk,n,j − α
(β)
j g(β)

n,j , (24e)

ηk,n,j+1 = ηk,n,j − α
(η)
j g(η)n,j , (24f)

where α
(λ)
j , α

(µ)
j , α

(ν)
j , α

(ρ)
j , α

(β)
j and α

(η)
j denote the jth step size respectively. The corresponding subgradients

g(λ)j , g(µ)j , g(ν)j , g(ρ)j , g(β)
n,j and g(η)n,j are given as

g(λ)j =
N

∑
n=1

K

∑
k=1

γuC4
u

(Ic∗
k,j[n])

3

∆3 +
N

∑
n=1

K

∑
k=1

2
Id
k,j∗[n]

B∆ − 1
gk[n]

σ2∆+

N

∑
n=1
‖v[n]‖2 − ε,

(25a)

g(µ)j = Ik −
N−1

∑
n=1

Iu∗
k,j [n], (25b)

g(ν)j = Ik −
N−1

∑
n=2

Ic∗
k,j[n], (25c)

g(ρ)j = Ok Ik −
N

∑
n=3

Id∗
k,j [n], (25d)

g(β)
n,j =

n

∑
i=2

Ic∗
k,j[i]−

n−1

∑
i=1

Iu∗
k,j [i], (25e)

g(η)n,j =
n

∑
i=2

Id∗
k,j −Ok

n−1

∑
i=2

Ic∗
k,j[i], (25f)

where Iu∗
k,j , Ic∗

k,j and Id∗
k,j denote the optimal bits allocation at the jth iteration which are obtained from (23a)–(23c).
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3.2. Trajectory Design under Given Bits Allocation

When the bits allocation of each slot Iu
k [n], Ic

k [n] and Id
k [n] are given, the problem P1 is

transformed into

P3 : min
v[n]

EU + EG, (26a)

s.t. (21b), (21l) and (21m). (26b)

It can be seen that the objective function and the constraints of P3 are convex, and the duality of
the variables is weak. Then, P3 can be solved by the CVX solver [38,40].

A two-stage alternating algorithm is proposed based on the solution of P2 and P3. The details
of the alternating algorithm are shown in Algorithm 1, where Ei

j and Ei denote the total energy
consumption of the UAV-enabled MEC system in each iteration as calculated in (2).

Algorithm 1 The alternating algorithm for P1

Input: K, N, B, ∆, δ Ok, Ck, κ, γu, σ2, g0, Vmax, ε qk, and tolerant thresholds ξ and ξ1;
1:
2: Initialize: iterative number i = 1 and q1

u[n];3:
4: repeat
5:
6: Initialize: iterative number j = 1 and λ1, µk,1, νk,1, ρk,1, βk,n,1, ηk,n,1;
7:
8: repeat
9:

10: Calculate the Iu,i∗
k,j [n], Ic,i∗

k,j [n] and Id,i∗
k,j [n] by Theorem 1 under the given trajectory qi

u[n];11:
12: Update the iterative number j = j + 1;
13:
14: Update λj, µk,j, νk,j, ρk,j, βk,n,j, ηk,n,j through Lemma 1;
15:
16: until Ei

j − Ei
j−1 ≤ ξ1 (j > 1);

17:
18: Let Iu,i∗

k = Iu,i∗
k,j , Ic,i∗

k = Ic,i∗
k,j and Id,i∗

k = Id,i∗
k,j ;

19:
20: Solve P3 with the CVX solver and obtain qi∗

u [n] under the given bits allocation Iu,i∗
k , Ic,i∗

k and
Id,i∗
k ;

21:
22: Let qi

u[n]=qi∗
u [n];

23:
24: Update the iterative number i = i + 1;
25:
26: until Ei − Ei−1 ≤ ξ (i > 1);
27:
28: Let E = Ei, Iu

k [n] = Iu,i∗
k , Ic

k [n] = Ic,i∗
k , Id

k [n] = Id,i∗
k and qu[n] = qi

u[n];29:
Output: E, Iu

k [n], Ic
k [n], Id

k [n] and qu[n].
30:

3.3. Complexity Analysis

The Complexity of Algorithm 1 comes from three parts. The first part is from the computation
of Iu∗

k [n], Ic∗
k [n] and Id∗

k [n] in Theorem 1. The second part comes from the subgradient method for
computing the dual variables. The third part is from the application of CVX to solve the trajectory
of the UAV. Let L denote the number of interations of outer loop. According to the work in [38,41],
the complexity of Algorithm 1 is O [L(KN + 1

ξ2
1
+ N3)] Generally, small values of K and N are enough

for good performance. Thus the proposed algorithm is feasible in practice.

4. Simulation Results

In this section, we evaluate the performance of the proposed algorithm by simulation.
The parameters of the simulation are shown in Table 2 [22–26].
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Table 2. List of symbols.

Parameter Description Value

Ck Number of CPU cycles needed to compute one input bit of user k 1500 cycles/bit
Ok Ratio of the number of output bits to the number of input bits for user k 0.5
K Number of ground users 5
N Number of time slots of T 100

Vmax Maximal velocity of the UAV 15 m/s
H Altitude of the UAV 10 m
B Communication bandwidth 40 Mhz
σ2 Noise power at the receiver 10−9 W
g0 Channel gain from the ground user k in nth slot −30 dB
γu Effective switched capacitance of the UAV’s CPU 10−28

κ Coefficient of the flying energy consumption (κ = 0.5M∆) 0.0675
E Total energy consumption of energy consumption of the UAV-enabled MEC system 5× 105

ξ1, ξ tolerant thresholds of the iterations 5× 10−4

We consider five trajectories of the UAV to compare the energy consumption of the UAV-enabled
MEC system. The size of input tasks of each user are assumed to be I1 = 4× 107 bits, I2 = 5× 107 bits,
I3 = 6 × 107 bits, I4 = 7 × 107 bits and I5 = 8 × 107 bits respectively. All tasks should be
processed within T = 5 s. The duration of each slot and sub-slot are set as 5× 10−2 s and 10−2 s
separately. The positions of each user are p1 = (0, 0, 0), p2 = (16, 0, 0), p3 = (8, 8, 0), p4 = (16, 16, 0)
and p5 = (0, 16, 0). The starting position of the UAV is (0, 0, H) and the final position is (0, 16, H).
The simulation compares five trajectories: the trajectory using the proposed algorithm, the square
trajectory whose length is 16m, the semicircle whose radius is 8m, the line trajectory from (0, 0, H) to
(0, 16, H) and the fixed point in (8, 8, H), as shown in Figure 4.

0 5 10 15
x (m)

0

2

4

6

8

10

12

14

16

y
 (

m
)

proposed scheme

square

semicircle

line

fixed position

user 5

user 3

user 2

user 4

user 1

Figure 4. Different trajectory of the Unmanned Aerial Vehicle (UAV) under the time constraint T = 5 s
(I1 = 4× 107 bits, I2 = 5× 107 bits, I3 = 6× 107 bits, I4 = 7× 107 bits and I5 = 8× 107 bits).

The total energy consumption of four pre-defined trajectories and the proposed algorithm are
compared under the same parameter settings. In four pre-defined trajectories, the bits allocation is
optimized under given trajectory. The total energy consumption of the UAV-enabled system under five
trajectories are 1.8468× 104 J, 1.9812× 104 J, 1.8735× 104 J, 1.9343× 104 J and 1.8665× 104 J respectively,
as given in Figure 5. The trajectory of the proposed scheme tends to user 2, user 3 and user 4 to receive
the input data and transmit output results. Compared with the pre-defined trajectories, the trajectory
of the proposed scheme is optimized to minimize the total energy consumption. In comparison with
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four pre-defined trajectories, the proposed scheme performs the lowest system energy consumption as
shown in Figure 5. It is not necessary for the UAV to go through every ground user to provide MEC
services. Consequently, the energy consumption of the square trajectory exceeds the proposed scheme.
In the semicircle trajectory, the UAV flies beyond the proposed scheme, causing the augment of the
energy consumption of mobility. Although the length of the line trajectory and fixed point decrease
compared with the length of the proposed scheme, the energy consumption of communication leads
to the increase of the total energy consumption of the system.

0 proposed square semicircle line fixed position

Trajectory
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) 10
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Figure 5. Energy consumption of the UAV-enabled mobile edge computing (MEC) system in
different trajectory.

Figure 6 shows the optimized bits allocation of each user in each slot for the trajectory using
the proposed algorithm of Figure 4. It can be seen from Figure 6 that the tendency of the number
of uploading bits, computing bits and downloading bits are similar. The number of uploading bits
is relatively high in the beginning slots and decreases over time. Therefore, the UAV can receive all
the tasks and provide the input data for the MEC server timely. Then, the UAV deals with the input
data and the number of computing bits maintains a steady value. When the computing results output
from the MEC server, the UAV needs to transmit the results to the ground users with time constraints.
Therefore, the number of the downloading bits increases over time. The number of downloading bits
is relatively low compared with the number of uploading bits because of the output/input ratio Ok.

The trajectory of the UAV varies under different time duration constraints for the proposed
scheme. Figure 7 shows the trajectories of the UAV under different time constraints 4 s, 4.5 s and
5 s, assuming that I1 = 4 × 107 bits, I2 = 5 × 107 bits, I3 = 6 × 107 bits, I4 = 7 × 107 bits and
I5 = 8× 107 bits. When T = 5 s, the trajectory of the UAV tends to user 2, user 3 and user 4 to receive
the input data and download the computing results. As the time constraint decreases, the trajectory of
the UAV shrinks to user 1 and user 2, because the velocity of the UAV is limited and the UAV should
complete the offloading tasks under the finite time duration constraint. Figure 8 shows the velocities
of the UAV for the trajectories shown in Figure 7 under different time constraints. The UAV flies fast
at the start to fly forward to the ground users to receive the uploading data. Then, the UAV reduces
the speed over time to ensure that all ground users can upload the data and the UAV has time to
process the data. Finally, the UAV speeds up in the end to finish the offloading tasks and to reach the
destination timely. Moreover, as the time constraint decreases, the velocity of the UAV increases to
complete the tasks under the limited task deadline.
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Figure 6. The bits allocation of all users under the time constraint T = 5 s, I1 = 4 × 107 bits,
I2 = 5× 107 bits, I3 = 6× 107 bits, I4 = 7× 107 bits and I5 = 8× 107 bits.
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Figure 7. The trajectory of the UAV under different time constraint (I1 = 4× 107 bits, I2 = 5× 107 bits,
I3 = 6× 107 bits, I4 = 7× 107 bits and I5 = 8× 107 bits).

In the two-stage alternating algorithm, the subproblem at a certain iteration is solved given the
optimized variables derived from last iteration or last stage. So the alternating algorithm proposed
in this paper should perform convergence. Figure 9 shows the convergence of the total energy
consumption of the UAV-enabled MEC system under different time constraints when I1 = 4× 107 bits,
I2 = 5× 107 bits, I3 = 6× 107 bits, I4 = 7× 107 bits and I5 = 8× 107 bits. It can be seen from
Figure 9 that the total energy consumption of the UAV-enabled MEC system converges to a certain
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value using the proposed algorithm. Only a few iteration numbers are needed to converge by applying
the alternating algorithm. Besides, the total energy consumption rises as the time constraint decreases,
because the increase of the UAV’s velocity leads to the growth of the total energy consumption under
the limited task deadline.
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Figure 8. The velocity of the UAV (I1 = 4× 107 bits, I2 = 5× 107 bits, I3 = 6× 107 bits, I4 = 7× 107

bits and I5 = 8× 107 bits).
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Figure 9. The total energy consumption of the system (I1 = 4 × 107 bits, I2 = 5 × 107 bits,
I3 = 6× 107 bits, I4 = 7× 107 bits and I5 = 8× 107 bits).

The superiority of the proposed algorithm is also demonstrated. In Figure 10, the proposed
two-stage alternating scheme and the successive convex approximation (SCA) scheme are compared.
The SCA algorithm is used to tackle the non-convex problems by applying the convex approximation
of the non-convex objective and constraints [23,42,43]. For the generality, the users are assumed to be
randomly distributed. Under the same distribution of the ground users, the optimizing trajectories
of the UAV using the proposed scheme and the SCA scheme are compared. Figure 11 shows the
total energy consumption of the UAV-enabled MEC system using the proposed two-stage alternating
algorithm and the SCA algorithm, assuming that T = 5 s, I1 = I3 = I5 = 2× 107 bits and I2 = I4 =

8× 107 bits. It can be seen from Figure 11 that the proposed scheme outperforms the SCA scheme in
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terms of the total energy consumption of the UAV-enabled MEC system. The UAV under the SCA
algorithm flies further than the proposed algorithm as shown in Figure 10. The longer distance leads
to the larger energy consumption of the UAV and the UAV-enabled MEC system.

4 6 8 10 12 14 16 18
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16
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m
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SCA

proposed scheme

user 4

user 2

user 3

user 5

user 1

Figure 10. The trajectory of the UAV using the proposed scheme and the SCA scheme under the time
constraint T = 5 s (I1 = I3 = I5 = 2× 107 bits, I2 = I4 = 8× 107 bits).

In Figure 11, the energy consumption of the system using the proposed algorithm, the energy
consumption of the ground users using the proposed algorithm, the energy consumption of the system
using the SCA algorithm and the energy consumption of the ground users by computing the tasks
locally are shown respectively. The energy consumption is compared under different time constraints
and the same user distribution as shown in Figure 10, assuming that T = 5 s, I1 = I3 = I5 = 2× 107 bits
and I2 = I4 = 8× 107 bits. Figure 11 demonstrates that the proposed algorithm performs lower
energy consumption of the system than the SCA algorithm under different time constraints. Moreover,
from Figure 11, we observe that offloading the computing tasks to the UAV-enabled MEC system
alleviates the burden of the ground users greatly. We also note that as the time constraint becomes
more stringent, the energy savings of the UAV-enabled system using the proposed scheme becomes
more prominent compared with computing locally. It should be noted that if the time constraint is too
short for the UAV to complete the offloading tasks under the velocity limit, the optimization problem
becomes infeasible.

To show the comlexity of Algorithm 1, the run time of Algorithm 1 is given in Table 3. The run
time is obtained by using a computer with 64-bit Intel(R) i5-4210 CPU, 8GB RAM. From Table 3, it
can be seen that it is feasible to implement Algorithm 1. The complexity of Algorithm 1 is affected by
the number of slots N and the number of ground users K. And the table shows that N has a larger
influence on the complexity than K, as analyzed in Section 4. Besides, how to reduce the complexity of
the algorithm, especially when N increases, will be further studied in our future work.

Table 3. Run time of Algorithm 1.

(N,K) (25,2) (50,2) (75,2) (25,4) (50,4) (75,4) (25,6) (50,6) (75,6)

Algorithm 1 23.56 s 41.31 s 108.42 s 25.48 s 81.09 s 203.32 s 71.73 s 132.18 s 315.42 s
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Figure 11. The total energy consumption of the MEC system under different time constraints
(I1 = I3 = I5 = 2× 107 bits, I2 = I4 = 8× 107 bits).

5. Conclusions

In this paper, a UAV-enabled MEC system is studied in which the UAV carries computing
resources to provide computation offloading services for the ground users. The bits allocation
of uploading data, computing data, downloading data and the trajectory of the UAV are jointly
optimized with the goal of minimizing the total energy consumption of the UAV-enabled system,
including the flying energy consumption and the transmission energy consumption. The energy
consumption minimization problem is optimized under the constraints of the number of each task’s
bits, the causality of the data and the velocity of the UAV. On account of the fact that the optimization
problem is non-convex, an alternating algorithm is proposed in this paper to solve the formulated
problem. The simulation results illustrate that the proposed scheme is superior to the benchmark
schemes. Moreover, the simulation results also show the performance of the proposed scheme with
different parameters. In the future work, we will consider the more complicated models for flying and
communications, such as the fading factors and the mobility of ground users.
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Appendix A. Proof of Theorem 1

In this appendix, we derive the Lagrangian dual function of P2, and then obtain the optimal
solution of P2 given the Lagrangian function. The partial Lagrangian function of P2 is given by (A1),
where I denotes the bits allocation Iu

k [n], Ic
k [n], Id

k [n]. And λ > 0, µ > 0, ν > 0, ρ > 0, β > 0, η > 0
denote the dual variables according to the constraints (21b)–(21k).
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L(I,λ, µ, ν, ρ, β, η) =
N

∑
n=1

K

∑
k=1

γu
C3

k (Ic
k [n])

3

∆2 +

N

∑
n=1

K

∑
k=1

2
Id
k [n]
Bδ −1

gk[n]
σ2δ +

N

∑
n=1
‖v[n]‖2+

λ[
N

∑
n=1

K

∑
k=1

γu
C3

k (Ic
k [n])

3

∆2 +
N

∑
n=1

K

∑
k=1

2
Id
k [n]
Bδ − 1
gk[n]

σ2δ

+
N

∑
n=1
‖v[n]‖2 − ε] +

K

∑
k=1

µk(Ik −
N−2

∑
n=1

Iu
k [n])+

K

∑
k=1

νk(Ik −
N−1

∑
n=2

Ic
k [n]) +

K

∑
k=1

ρk(Ok Ik −
N

∑
n=3

Id
k [n])

K

∑
k=1

N−1

∑
n=2

βk,n(
n

∑
i=2

Ic
k [i]−

n−1

∑
i=1

Iu
k [i])+

K

∑
k=1

N−1

∑
n=2

ηk,n(
n+1

∑
i=3

Id
k [i]−Ok

n

∑
i=2

Ic
k [i])

(A1)

Based on (A1), the optimal solution of P2 can be derived by solving the Lagrangian dual function.
Then, the Lagrangian dual function of P2 can be presented as

min
I
L(I, λ, µ, ν, ρ, β, η) (A2a)

s.t. (21h)–(21k). (A2b)

According to (A1) and (A2), the derivations of the Lagrangian of P1 with respect of Iu
k [n], Ic

k [n],
Iu
k [n] are expressed as

∂L(I, λ, µ, ν, ρ, β, η)

∂Id
k [n]

=
2

Iu
k [n]
Bδ σ2 ln 2
gk[n]B

−

µk −
N−1

∑
i=n+1

βk,i, n = 1, . . . , N − 2,

(A3a)

∂L(I, λ, µ, ν, ρ, β, η)

∂Ic
k [n]

=
3(λ + 1)γuC3

k (Ic
k [n])

2

∆2

− νk +
N−1

∑
i=n

βk,i −Ok

N−1

∑
i=n

ηk,i, n = 2, . . . , N − 1,

(A3b)

∂L(I, λ, µ, ν, ρ, β, η)

∂Id
k [n]

= (λ + 1)
2

Id
k [n]
Bδ ln 2σ2

gk[n]B
−

ρk +
N−1

∑
i=n−1

ηk,i, n = 3, . . . , N.

(A3c)

Let the derivations be zero, and the optimal solution of bits allocation Iu∗
k [n], Ic∗

k [n] and Id∗
k [n] can

be solved separately. Thus, (23a), (23b) and (23c) shows the optimal solution of P2.
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